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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1996, VOL. 15, No. 2, 345-374 

Exploring molecular vibrational motions with periodic orbits 

by STAVROS C. FARANTOS 
Institute of Electronic Structure and Laser, 

Foundation for Research and Technology-Hellas, 
and Department of Chemistry, University of Crete, 

Iraklion, Crete 71 1 10, Greece 

The theory of periodic orbits for conservative Hamiltonian systems and the way 
that it is applied to analyse vibrational spectra of highly excited polyatomic 
molecules is reviewed. Applications for triatomic, tetratomic molecules and van der 
Waals clusters are presented. It is shown that the periodic orbit method can trace 
localized eigenfunctions above potential barriers which are associated with 
saddle-node bifurcations. Such states connect separate minima on the potential 
energy surface, and thus, are important for studying isomerization processes. 

1. Introduction: The object of research 
Classical mechanics is the theory which describes the motions of macroscopic 

bodies. Nevertheless, in the last decades of this century classical mechanics has seen 
an unprecedented popularity among chemical physicists, for whom the main concern 
is the investigation of molecular motions and transformations. 

Since the pioneering work of Karplus, Porter, and Sharma in 1965 on the study of 
H + H2 reaction [ 11, the classical trajectory method, and in general classical mechanics, 
have been applied to a variety of problems ranging from molecular collisions [ 2 ] ,  
interaction of electromagnetic radiation with atoms and molecules [3],  and the 
simulations of clusters [4] and macroscopic states of matter [5].  Even problems in 
molecular physics which can be solved quantum mechanically are treated by classical 
mechanics in an effort to achieve a better physical insight. 

One main reason for the adoption of classical mechanical approximation in 
chemical dynamics is our ability to perform calculations for many-body problems, and 
to obtain results in good agreement with the experiment. 

A general argument for justifying applications of classical mechanics to quantum 
objects such as molecules, was always referred to the validity of semiclassical theory 
for heavy particles. At the beginning, the semiclassical quantization rule of 
Einstein-Brillouin-Keller (EBK) [6,7] was applied to quantize quasi-periodic 
trajectories. Dynamical systems whose trajectories in phase space are quasi-periodic are 
called integrable, and that implies that there are as many constants of motion as the 
number of degrees of freedom [8,9]. 

However, the enthusiasm for a theoretical justification of using classical mechanics 
in molecules was quickly dropped, by realizing that molecular systems are generally 
not integrable, and thus, at high energies most of the trajectories are chaotic for which 
the EBK semiclassical rule is not valid [lo]. 

The advances of nonlinear classical mechanics and the deeper understanding of the 
structure of phase space, i.e. how regular and chaotic trajectories are interwoven in 
conservative Hamiltonian systems [ 111, inevitably brought again the problem of the 
correspondence of classical to quantum mechanics. Particularly the field of studying 
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346 S. C. Farantos 

the quantum behaviour of a classically chaotic system has brought much discussion 
about the meaning of quantum chaos [ 12,131. 

The classical mechanical results for the vibrational motions of a polyatomic 
molecule are the following. At low energies there is a small deviation from the motions 
of a few uncoupled harmonic oscillators. These motions are described by quasi-periodic 
trajectories which lie on the surfaces of tori in phase space, and according to the 
Kolmogorov-Arnold-Moser (KAM) theorem [ 141, tori survive even when anhar- 
monicity sets in at higher energies. On the other hand, the same theorem predicts that 
above some excitation energy, where the anharmonic and coupling terms in the potential 
function become important, tori are destroyed and chaotic trajectories prevail. 

Thus, the generic picture of phase space for small polyatomic molecules which has 
emerged from all these studies is that, the phase space is predominantly regular at low 
energies, predominantly chaotic at high energies, and with regular and irregular regions 
coexisting at intermediate energies. This picture is expected for molecules with one well 
in the potential energy surface. Most molecules have usually isomers, and this means 
that the potential energy surfaces have more than one minima separated by saddle 
points. As we shall see this makes the structure of phase space more complicated. 

Now, we ask what is the corresponding quantum mechanical picture of the 
molecule. Mainly numerical calculations have shown that the eigenfunctions and 
the distributions of the eigenvalues in quantum mechanical calculations reflect the 
structure of phase space. For energy ranges where the classical motion is regular 
the eigenfunctions are localized with well ordered nodal patterns, but for energies where 
the classical motion is chaotic the eigenfunctions are delocalized with irregular nodal 
patterns. Similarly, the distributions of the differences of adjacent energy levels are 
different for energy ranges where the classical motions are regular and chaotic [7,15]. 

The most exciting outcome of all these studies was the numerical observation that 
even in regions of phase space where classical mechanics show chaotic behaviour, 
quantum wavefunctions may remain localized in configuration space to some extent. 
This localization was associated with periodic orbits after the pioneering work of 
McDonald and Kaufman [16], and Heller [17,18] in the stadium model. 

This discovery brought to the light an earlier work by Gutzwiller on the 
semiclassical calculation of the density of states by using an infinite summation over 
periodic orbits [ 19,201. Since periodic orbits may be unstable as well as stable, the trace 
formula of Gutzwiller, as his semiclassical formula is now known, is considered as one 
way for semiclassically quantizing unstable trajectories [21-271. 

Periodic orbits were considered by Poincark as the most important objects to explore 
the complicated structure of phase space [28]. The localization of the quantum 
wavefunctions along the periodic orbits at high excitation energies where the 
trajectories are most chaotic, has made the periodic orbits important for quantum 
mechanics as well. 

A much studied physical system in association with nonlinear mechanics is the 
hydrogen atom in strong magnetic fields for which excellent results have been obtained 

Furthermore, the effort for understanding the classical-quantum correspondence in 
the light of the new discoveries has triggered a lot of research in molecular vibrational 
spectroscopy. Polyatomic molecules offer real systems for testing the theories of 
nonlinear mechanics. 

A vibrational spectrum is the fingerprint of the nuclear motions in the molecule. 
At low-lying energies a typical normal mode analysis is the standard approach for the 
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Exploring molecular vibrational motions 347 

assignment of the spectra. Usually, a harmonic Hamiltonian plus a few anharmonic 
terms treated with perturbation theory, are enough to assign quantum numbers to the 
observed peaks of the spectrum [32]. 

A successful assignment of the peaks with good quantum numbers is what is 
expected for a reguZur spectrum, and this is always true for the first low-energy 
vibrational levels. However, at high energies complex spectra appear, and then, no 
assignment of the peaks is possible with good quantum numbers. In such cases statistical 
methods, which use global functional forms are employed to describe the spectra [l51. 
These non-assignable spectra are called irregular or chaotic. 

Still, it has been found that an irregular spectrum may show regular patterns at low 
rzsolution [33,34].Then, it is possible to label the peaks of the low-resolution spectrum 
with normal mode quantum numbers. The significance of the regularities at low 
resolution can be appreciated when we calculate spectra within a time-dependent theory 
[35]. The spectrum is then the Fourier transform of a time autoconelation function that 
traces the evolution of a wavepacket in time. Recurrences of the wavepacket to its initial 
position explains the spectroscopic peaks. In turn, we can ask what is the 
correspondence of the dynamics of wavepacket to the classical trajectories. As was 
stated before, the similarities between classical and quantum dynamics found for 
molecular systems are astonishing. 

Acetylene [36-381 was the first molecule to be tested for quantum chaotic 
behaviour. Other molecules such as NO2 139,401, SO2 [41-43], Na3 [44,45], HCN 
[46,47], 0 3  [48-501, H: [51,521, CS2 [531, SiH2 [541, CH2OH [55], H2CO [561 
followed. Molecules which show chaotic behaviour in high-resolution spectroscopy, 
may have regular assignable spectra in low-resolution spectroscopy. 

For theoretical spectroscopy the following questions have to be answered 

Given the complexity ofpolyatomic molecules and the difJicculties of carrying out quantum 
mechanical calculations for many degrees of freedom systems, can we deduce the 
dynamics from a spectrum? 
Even more, can we predict the dynamical behaviour of a molecule for given potential 
energy suflace(s)? 

Classical mechanics seem to offer important tools not only for qualitative answers, 
but also with a predictive power for the motions of the polyatomic molecules at high 
energies where nonlinear effects are strong and quantum mechanical calculations 
difficult to perform. There is no doubt that the final answers to the above questions must 
be quantum mechanical, and good agreement between quantum and classical mechanics 
poses the need for the development of a quantum theory compatible with the classical 
theory of chaos. 

In this article we review classical mechanical methods for analysing the nuclear 
motions in polyatomic molecules referring mainly to our work. A recent review article 
on the same subject is that of Gomez and Pollak [33]. Here, not only do we cover more 
recent results, but also we emphasize methods of exploring the molecular phase space 
structure. 

The article is organized in the following manner. Q 2 describes how a periodic orbit 
analysis reveals the structure of phase space. In 0 3, we describe methods for obtaining 
spectra in the classical, semiclassical, and quantum mechanical approximations from 
particular regions of phase space. Methods for locating periodic orbits, examining their 
stability, and following their evolution with the energy are presented in 0 4. In Q 5 
applications of the periodic orbit approach will be given for triatomic molecules such 
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348 S. C. Furuntos 

as HCN, 0 3 ,  and SOz, van der Waals clusters, ArCO, Ar3, as well as tetratomic 
molecules such as CzH2. Finally in Q 6,  we summarize the conclusions. 

2. Periodic orbits and phase space structure 
We assume that the molecular potential energy surfuce (pes) of a specific electronic 

state is known. In the classical mechanical approximation we are interested in 
investigating the phase space structure for a range of energies. The total energy of the 
system is a common varying parameter in a nonlinear mechanical search. 

With the term phase space structure we mean to search for regions of phase space 
which contain trajectories of similar type. For example, a coarse graining characteriza- 
tion of phase space is the detection of the regions with quasi-periodic and chaotic 
trajectories. A more detailed study will reveal which resonance dominates in a certain 
region of phase space [ 113. In this section we discuss how families of periodic orbits 
portray the structure of phase space. 

Let qi, i = 1 , .  . . , N, be the generalized coordinates of a dynamical system of N 
degrees of freedom, and pi, i = 1,  . . . ,N, the conjugate momenta. If H(q, p) is the 
Hamiltonian of the system, the equations of motion are written in Hamilton’s form as, 

I (1 )  
dqifdt = q&) = dHfapi 
dpifdt = pi(t) = - aHfaqi, i = 1, . . . , N. 

For convenience, we consider coordinates and momenta as the components of the vector 
X, 

(2) T x=(ql,...,(?N,pl,...rpN) 9 

where T denotes the transpose of the 2N-D column vector. The equations of motion are 
then written, 

2(t) = J ~ aH(x) - - J VH(x), 
ax 

where, 

(3) 

ON and IN are the zero and unit N X N matrices respectively. J VH(x) is a vector field, 
and J a symplectic matrix which satisfies the relations, 

J-’=  -J ,  and J2= - 1 2 ~ .  (5) 
Linearization of the equations of motion is a common strategy to study the behaviour 

of the trajectories around a specific trajectory x(t). The Grobman-Hartman theorem 1571 
states that the linearization of the vector field (JVH(x)) is topologically equivalent to 
the vector field. Thus, important conclusions obtained for the linearized system can be 
extended to the nonlinear system. 

If x(t)  is a solution of equation (3) we want to know the behaviour of a nearby 
trajectory 

x’( t )  = x(t)  + C(t). 

X’(t)  - k(t) = J VH(X’) - J VH(X). 

(6) 

From equation (3) we have, 

(7) 
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Exploring molecular vibrational motions 349 

A Taylor expansion of the right hand side (r.h.s.) of equation (7) up to the first order 
gives, 

&t) = Ja2H[x( t ) l [ ( t ) .  (8) 

a2H[x(t)]  denotes the matrix of second derivatives of the Hamiltonian evaluated at x(t) .  
If, 

A(t) = Ja2Zdtx(t)l, (9) 

then equation (8) is written as, 

4w = A ( M 0 .  

These are 2N linear differential equations with time dependent coefficients, and are 
called variational equations [58] .  

The general solution of equation (10) can be expressed by 

C ( 0  = Z(t>C(O>, (1 1) 

where [(O) describes the initial displacement from the trajectory x .  The fundamental 
matrix, Z(t ) ,  satisfies the variational equations as can be easily proved; 

Z( t )  = A(t)Z(t). (12) 

If x(t; s) is the reference trajectory with initial conditions s, then we can show that the 
fundamental matrix has columns the vectors, 

i.e. the derivatives of the trajectory x(t;  s)  with respect to the initial coordinates Sk, 
k = 1, . . . , 2N .  Indeed, differentiating both sides of equation (3) we take, 

Thus, 

Obviously, at t = 0, Z is the matrix with columns the vectors (1,0,. .. ,O), 
(0,1,0, ... ,O), ... , (O,O, ... , I),  i.e., 

Z ( 0 )  = I2N. (16) 

Later on we are interested in investigating the variational equations when x( t ;  s )  is 
a periodic orbit with period T. In this case, the linear equations ( S O )  have periodic 
coefficients, and the fundamental matrix at t = T, 
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350 S. C. Farantos 

is named the monodromy matrix. As we shall see, the monodromy matix plays an 
important role in the theory of periodic orbits and their stability. 

A systematic search of the phase space structure is obtained by locating the 
following geometrical objects with increasing dimensionality, d. 

(1) Stationary (or equilibrium or critical) points, d = 0. 
( 2 )  Periodic orbits, d = 1, and for unstable periodic orbits their stable and unstable 

(3) Reduced dimension tori, d < N, and 
(4) KAM tori, d = N. 

manifolds. 

After having located these objects we usually carry out a stability analysis to examine 
the behaviour of the trajectories in their neighbourhood. 

Equilibrium points are those points in phase space for which x = 0. To locate them 
we seek the roots of equation, 

V H ( x )  = 0. (18) 

The significance of equilibrium points, which coincide with the extrema of the 
potential energy surface [59], stems from some important theorems which are proved 
in Milnor’s book [60], and state that the topological type of the energy manifolds, H = E, 
changes only at the equilibrium points. Therefore, substantial changes in the dynamics 
are expected when the total energy exceeds an equilibrium point. The stability of 
equilibrium points is determined by the second derivatives of the Hamiltonian. Stable 
equilibrium points, xo. in the sense of Lyapunov (asymptotically stable) occur when the 
Hessian of the Hamiltonian, a2H, is positive definite [59]. In this case the eigenvalues 
of the matrix Ja2H(xo) are pairs of pure imaginary numbers, _f ipk, k = 1, . . . , N .  
For saddle points there are real eigenvalues, ? ,u, and the corresponding eigenvectors 
point to the unstable directions. 

What happens in phase space as we move away from a stationary point and introduce 
a small perturbation? For stable equilibrium points the theorems of Kolmogorov- 
Arnold-Moser (KAM) [14], and of Poincark-Birkoff (PB) [61] provide an answer. 
For incommensurable unperturbed frequencies (i.e. there is no relation, Zynioi = 0, 
among the frequencies mi and the integers ni) the KAM theorem guarantees the 
existence of tori when a small perturbation is introduced, whereas the PB theorem states 
that the commensurable unperturbed tori will break and an even number of periodic 
orbits will appear; half of them are stable and half are unstable. By stable we mean that 
nearby trajectories stay close to the periodic orbit for infinite time, and by unstable we 
describe the property of nearby trajectories to deviate from the periodic orbit either 
exponentially or with a power of time t. 

After having located the equilibrium points the next geometrical objects of 
importance are the periodic orbits, i.e. those trajectories which close in phase space; 

x ( T )  - x(0) = 0. (19) 

One important existence theorem of periodic orbits is that of Weinstein [62]. 
This theorem guarantees, that arbitrarily close to a stable equilibrium point there are 
at least N periodic orbits whose periods are close to those of the linearized system. 
Generalizations of this theorem were given by Moser [63]. A survey of the existence 
theorems of periodic orbits for nonlinear dynamical systems may be found in [64,65]. 

Around stable periodic orbits there are tori which may occupy a significant part of 
phase space or a very small region. These tori have similar morphology to the periodic 
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-6. 
Y 

Figure 1. Poincark surface of section for several trajectories on the plane (y,pu), and for x = 0 
and p x  > 0. All trajectories correspond to the energy of about 21 atomic units [69]. 

orbit. Unstable periodic orbits are surrounded by chaotic trajectories or reduced 
dimension tori (for systems with more than two degrees of freedom). Associated with 
one unstable periodic orbit are the stable and unstable manifolds which define the 
separatrix of a resonance. The transport of trajectories from in and out a resonance zone 
has been discussed by MacKay, Meiss and Percival [66,67], and Bensimon and 
Kadanoff [68]. 

To summarize, the typical structure of phase space at energies where quasi-periodic 
and chaotic trajectories coexist is as islands of stability surrounded by chaotic seas. 
Figure 1 shows a typical Poincark surface of sections obtained with a two-dimensional 
galactic model potential [69]. The numbers describe the ratio of the two vibrational 
frequencies (resonance condition) and the lines indicate the position of the intersection 
of the periodic orbits with the plane of section. Tori, whose intersection with the 
Poincar6 plane are closed smooth curves, surround stable periodic orbits, whereas 
chaotic trajectories surround unstable periodic orbits. For a chaotic trajectory to move 
from one resonance region to another, it has to pass through separatrices and that results 
in the trapping of the trajectory in some regions of phase space (see for example the 
region around the 5 : 10 resonance in figure 1). Thus, we conclude that periodic orbits 
at every energy E provide the skeleton of phase space. 

3. Phase space structure and spectroscopy 
A plethora of numerical results show that the eigenfunctions trace the structure of 

phase space by staying localized along unstable periodic orbits or in the resonance 
region of stable periodic orbits [70,71]. Even examples where eigenfuctions are 
influenced by the stable and unstable manifolds of unstable periodic orbits have been 
reported [72]. We have compared time independent and time dependent quantum 
mechanical calculations with classical results of two model systems and confirmed the 
above conclusions [69,73]. In these studies we could classify all calculated 
eigenfunctions according to the morphologies of the periodic orbits. 

Based on these findings, in this section we show how from the phase space structure 
analysis we can construct spectra pertinent to specific regions of phase space with 
quantum and classical calculation. Before proceeding to this, we first show how 
Gutzwiller’s semiclassical theory connects periodic orbits, and thus structures of phase 
space, with vibrational spectra. 
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352 S. C. Farantos 

3.1. The semiclassical trace formula 
The fluctuating part, N ( E ) ,  of the density of states is predicted by Gutzwiller's trace 

formula 171 to be, 

D(E)  = 2 6(E  - En) = a@) + N(E) ,  
n 

where 
Tpo exp [ij(S,& - ,upurc12)l 
nfi j =  [det (MLu - l)]'" ' 

N ( E )  = Re - 

D ( E )  is the density of states at energy E, and D,,(E) the average density of states. 
The sums in equation (20)  are over all periodic orbits with period T,,, action S,,, and 
for an infinite number of loops j. ,upPo is the Maslov index (number of turning points) 
and WjPo is the stability matrix which describes the results of the transverse 
displacements off the periodic orbit afterj loops. The determinant in equation (20) is 
evaluated from the eigenvalues of the monodromy matrix, 

2(N-  I )  

det (Mio - 1) = fl [Ai0(i) - 11, (21) 
i =  1 

where Aio(i) is thejth power of the ith eigenvalue (a complex or real number) of the 
monodromy matrix which corresponds to a perpendicular direction of the periodic orbit. 
All the above quantities are computed as functions of the total energy during the periodic 
orbit analysis. 

Generalizations of the trace formula have been given [22,25] ,  and Miller [23] has 
proved a relation for semiclassically quantizing specific stable periodic orbits. 

According to equation (20)  the calculation of the density of states requires a 
summation over all periodic orbits and for an infinite number of loops of each periodic 
orbit. This, of course, is impossible for real systems, and therefore there are convergence 
problems with this equation. However, applications of the trace formula such as in the 
hydrogen atom in strong magnetic fields [31] have shown that satisfactory results may 
be obtained by a finite number of periodic orbits. Although accurate eigenvalues are 
difficult to achieve, low resolution characteristics of the spectra can be identified, and 
thus, a connection of particular periodic orbits with spectral peaks can be made [74]. 

3.2. Time dependent quantum calculations: The PO-TDSE method 
An immediate association of the periodic orbits and the phase space region around 

them with the quantum dynamics of the molecule is established by putting an initial 
wavepacket centred on the periodic orbit and then solving the time dependent 
Schrodinger equation. Heller [35] has extensively used the time dependent formalism 
to describe molecular spectra. 

The time evolution of the initial wavepacket is followed by solving the time 
dependent Schrodinger equation; 

Several schemes have been proposed for the propagation of the wavepacket 14) in 
time, [75]: (i) second-order difference method, (ii) the split operator algorithm, 
(iii) representation of the propagator operator in Chebyshev series, and (iv) the Lanczos 
method. 
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Exploring molecular vibrational motions 353 

The spectrum is calculated by first evaluating the time autocorrelation function; 

(23) C(f) = (44% O)14q9 t)), 

and then computing its Fourier transform, 
m 

Z(E) = I exp (iEt/h) C(t) dt. 27ch - m  

The bracket (( )) means integration over the coordinates q. 

as a series of the eigenfunctions In) of the Hamiltonian fi. 
To see how the eigenvalues are extracted from equation (24), we expand 14(q, t)) 

kMq, 0) = exp ( - aWl4(q, 0))  = c exp ( - iE,W In>(n(4(q, 0)). 

By introducing the overlap integral, c, = (nld(q, 0)), the spectrum becomes, 

(25) 
n 

T 1 = - 
27th 1cnI2 2i% 1- exp [ - i(En - E)t/h] dt 

Thus, for infinite integration time (absolute resolution) we have a sum of delta functions 
located at the eigenvalues En. Finite integration in time (low resolution) will give a sum 
of broadened peaks which cover several E,. 

We could also extract the eigenfunctions In) by computing the Fourier transform 
[76-781, 

It is clear, that in a time dependent calculation, we locate those eigenfunctions which 
overlap significantly with the initial wavefunction (#(q, 0)). Since we expect 
localization of the eigenfunctions around periodic orbits, we simulate the spectrum by 
taking the appropriate initial wavepacket centred at the place of interest. It can be either 
an experimental spectrum or a theoretical one, which will reveal those states that are 
localized at particular regions of phase space. We refer to this method as the periodic 
orbit-time dependent Schrodinger equation (PO-TDSE). 

Taylor and co-workers obtained low-resolution spectra for the hydrogen atom in a 
magnetic field [79], and the H: [SO], by distributing a basis set of Gaussian functions 
along the periodic orbit and its neighbourhood. The diagonalization of the Hamiltonian 
matrix in association with stabilization techniques [ 8 13 revealed the eigenfunctions 
localized in the region of periodic orbit. A direct solution of the time-dependent 
Schrodinger equation with grid methods [82] is robust and has become more popular 
in the last few years. 

3.3. Classical calculations 
Although quantum mechanical calculations are always what we should ask, they 

are not feasible at present for more than three degrees of freedom systems. It is useful 
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3 54 S. C. Farantos 

then, to find the classical analogue of the quantum spectrum. In this case, the 
correspondence between spectrum and phase space structure is more straightforward. 

The following formulation has been used in the past [83,70]. By taking the square 
of the absolute value of the correlation function C(t), (the survival probabilityfnction), 

lC(t)l2 = I(4<q, O)l+(q, = (4(q9O)lWl, t>>(d)<q, t)l4(q, 0>>, (28) 

and using the identity relation, 

n 

we get, 

p(0) is a density operator, 

and 

is the Heisenberg representation of p(0). 
We can pass to the classical analogue by replacing the trace in equation (30) with 

an integral over the phase space, and by replacing the density operators with classical 
distribution functions, 

(32) 

The classical initial distribution p(0) is usually a Wigner or a Husimi transform of the 
initial quantum wavefunction, I4(q, 0)), [84,85]. The spectrum is then defined as the 
Fourier transform, 

Zc(o) = exp (iot) Q(t)  dt. (33) I 
The classical survival probability function, equation (32), and its Fourier transform, 

have successfully been used and advanced by Gomez Llorente, Pollak, and Taylor 
[45,86]. 

4. Periodic orbits, stability and continuationhifurcation diagrams 
Stationary points and periodic orbits are the most important classical objects and 

their knowledge reveals significant information for the dynamics of molecular systems. 
It is therefore valuable to have methods for locating periodic orbits in conservative 
Hamiltonian systems of many degrees of freedom such as molecules, which quite often 
show extreme instabilities. In the following subsection we review such methods. 
Although we concentrate on periodic orbits the same techniques can be used for locating 
stationary points on the pes, since stationary points can be considered as the limiting 
case of zero period, T + 0. We do not review methods for following reaction paths on 
the pes. 
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Exploring molecular vibrational motions 355 

4.1. Methods for locating periodic orbits 
In order to classify the methods of finding periodic orbits it is appropriate to see 

this problem as a two-point boundary value problem. The boundary conditions are the 
relations of closing the trajectory in phase space, equation (1 9). 

There are two classes of numerical methods for solving in general two-point 
boundary value problems [87]. The first class is the shooting methods in which the 
two-point boundary value problem is converted to an initial value one. Choosing an 
initial value for the trajectory we integrate the equations of motion and check the 
discrepancy in the boundary conditions. By varying the initial conditions or some free 
parameters we successfully approach the trajectory which satisfies the boundary 
conditions. 

The second class includes the relaxation methods. In these methods the differential 
equations are replaced by difference equations and an appropriate mesh of points for 
the variables are chosen. Then, starting with an approximate solution we try to bring 
it into snccessively closer agreement with the finite difference equations, and with the 
boundary conditions. Relaxation methods are recommended for unstable systems [87]. 

Both techniques have been applied to locate periodic orbits in molecules. The 
shooting methods are the most popular [SS]. There are several variants of it [89] which 
result from fixing the total energy or the period of the periodic orbit, that may or may 
not use a PoincarC surface of section, and use analytical second derivatives of the 
Hamiltonian or numerically estimate the gradient in the Newton-Raphson method by 
integrating neighbouring trajectories. The monodromy method of Baranger and 
co-workers [90-921 is a technique which is classified in the relaxation methods. 

An extension of the shooting techniques which tries to incorporate the benefits of 
the relaxation technique is the multishooting method [93-981. In this case the one-point 
initial value problem is converted to (m - 1) initial value problems by choosing m nodes 
in the independent variable. We do not take a finite difference representation of the 
equations of motion but instead, we integrate (m - 1) trajectories and by varying their 
(m - 1) initial conditions we approach a smooth trajectory which satisfies the boundary 
conditions. In the following we describe the multishooting technique. 

The boundary value problem is converted to an initial value problem by considering 
the initial values of the coordinates and momenta s 

x(O)= s, (34) 

as independent variables in the nonlinear functions 

B(s) = x(T; S )  - S. (35) 

We denote the roots of equation (35) as s*, i.e. 

B(s*) = 0. (36) 

Thus, if s is a nearby value to the solution s* we can compute the functions B(s) by 
integrating Hamilton’s equations for the period T. By appropriately modifying the initial 
values s we hope to converge to the solution, that is s + s* and B + 0. 

The roots of equation (36) are found by a Newton-Raphson method.? The 

t The Newton-Raphson method is recommended for systems with less than 100 degrees of 
freedom. For systems with a large number of degrees of freedom, methods such as the conjugate 
gradient and the variable metric are more suitable [99]. 
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356 S. C. Farantos 

Newton-Raphson method is an iterative scheme and at each iteration, k,  we update the 
initial conditions of the orbit 

s k +  1 = s k  + Ask. (37) 
The corrections Asp  are obtained by expanding equation (35) in a Taylor series up to 
the first order, and then, we solve the linear algebraic equations 

[Zk(T) - Iz~lAsk = - B(sk). (38) 

&(T) is the fundamental matrix. 
Quite often the Newton-Raphson method diverges, although, when it converges it 

does that quadratically. Sometimes problems of divergencies are cured by scaling the 
corrections with a parameter A k  

s k  + I = s k  + &Ask, (39) 

where 0 < & C 1, and &+ 1 as s k +  s*. These techniques have been named 
underrelaxed or damped Newton-Raphson methods. Several schemes for selecting Ak 

have been proposed [941. A simple one is 

(40) 
Amin 

/2k = 
(hnin, b k l l )  . 

/2fin is an input minimum value for the parameter, and 11 11 denotes the Euclidean norm 
of the vector. 

The linear system of equations (38), Ask, may be solved by several algorithms; (i) 
LU-decomposition methods, (ii) SVD (singular value decomposition) and ( 5 )  iterative 
methods such as the conjugate gradient, variable metric, and quasi-Newton methods 

The idea of multishooting is to combine shooting and relaxation techniques. Let us 
assume that we divide the period Tin (m - 1) time intervals, while first for convenience 
we introduce a new scaled time z = t/T, (0 d z S l ) ,  

0 = z1 < 7 2  < ... < zm- 1 < 2, = 1. 

~ 7 1 .  

(41) 

Thus, for the simple shooting method m = 2. 
From now on we drop the index for the iterations k,  and we use the indexj to denote 

the nodes in the periodic orbit. If the initial conditions of the trajectory at each node 
j is sj at time zj, and the final value of the trajectory at time zj + 1 is denoted by x(zj + I ;  Sj), 

then, ( m  - 2) continuity conditions should be satisfied (for an illustration see figure 2) 

C(s.,s. J J J + '  ) = x(zj+ I;s j )  - sj+ ,  =0 ,  j =  1,2, ... ,m - 2, (42) 

together with the boundary conditions 

B(s, - 1, s,) = ~(7,; S, - 1) - SI = 0. (43) 

Now we have to solve (m - 1 )  initial value problems, and we use again the 
Newton-Raphson method 

which become 
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- z1 -12N 0 ... 0 0 

0 z2 - IZN ... 0 0 

. . . . . . . . . ... ... ... 
0 0 0 ... z m - 2  - 1 2 N  

357 

Figure 2. 

u 
A schematic representation of the multishooting method for locating periodic orbits. 

Using the boundary conditions (equation (43)) we get 

B ( s ~ -  1, SI) + Zm - , ( ~ m ) A ~ r n  - I - ASI = 0, 

where, 

Equations (45,46) are written in a matrix form of dimension 2N(m - 1) X 2N(m - 1) 

"..J B 

The above system of linear equations is solved by invoking the so called condensing 
algorithm [95] 

Asj+] =ZjAsj+Cj, j =  1,2 ,..., m - 2 ,  (50) 
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358 S. C. Farantos 

where 

} (51) 
E = Zm - lZm - 2 . . .Z2Z1 - 12N9 
U = B + Z , - ~ ( C , - ~ + Z ~ - ~ ( C ~ - ~  +Z,-3(Cm-4+ ... +ZzC,)...)). 

The (rn - 1)  fundamental matrices required in the multishooting method are 
evaluated either from numerically obtained derivatives or analytically. The first requires 
the integration of 2N(m - 1 )  neighbouring trajectories, and the derivatives are then 
computed by finite differences. In the case that the analytic second derivatives of the 
Hamiltonian are available, we integrate Hamilton’s and variational equations 
(equations (10)) together. After converging to the periodic orbit we can have an estimate 
of the monodromy matrix from the product of matrices 

M = Zm - 1Zm - 2 . .Z2Z1. (52) 

Sometimes it is desirable to bring all periodic orbits on a common Poincark surface 
of section. The Hendn method [ 1001 is not suitable for highly unstable systems. Then, 
it is more convenient to increase the boundary conditions by fixing one coordinate 
(momentum), i.e., 

X I  - 5: = 0, (53) 

and to consider, that the period of the periodic orbit satisfies the trivial differential 
equation [97] 

T =  0. (54) 

Thus, a (2N + 1 )  dimensional boundary value problem must be solved. 

4.2. Stability of periodic orbits 
The behaviour of the nearby trajectories to the periodic orbit is examined by 

studying the eigenvalues of the monodromy matrix A;. Sometimes it is convenient to 
express the eigenvalues of the monodromy matrix as, 

A = exp (aT), (55) 

where the exponents a are called characteristic exponents. 
From the general solution of variational equations (equation (1 1)) we deduce 

n; 0 ... 0 

c(nT) = M(T)”C(O) = 1.1. ; ::: .o.;11)9 (56) 

... &I 

assuming that the coordinate system is the set of the eigenvectors of M. Obviously, the 
eigenvalues of the monodromy matrix describe the deviation from the periodic orbit 
of an initial displacement c(0) after n iterations. 

From the symplectic properties of the Hamiltonian systems we know that the 
eigenvalues of the monodromy matrix always appear in pairs; either complex conjugate 
or inverse real numbers. Also, because of the conservation of the total energy two 
eigenvalues are always equal to one. Thus, excluding the two unit eigenvalues the 
following cases can arise [loll:  

(i) If all the eigenvalues are on the unit complex circle, and multiple eigenvalues 
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Exploring molecular vibrational motions 359 

have independent eigenvectors which are equal to the multiplicity of the 
eigenvalues, then, the periodic orbit is stable (eZliptic), and it is surrounded by 
tori. The characteristic exponents are pure imaginary numbers and maybe 
considered as the frequencies of rotation of a neighbouring trajectory around 
the periodic orbit, a = io. 

It may happen that, 

T l ( 2 d c )  = m h ,  (57) 
where m, and n are integers. Then, it can be shown that the variational equations 
have a periodic solution, and there should be a new periodic orbit of period 
T' = nT in the neighbourhood of the initial one. 
If there are eigenvalues equal to one, then a = 0 and a new periodic orbit of 
period T also exists in the neighbourhood of the parent one. For eigenvalues 
equal to - 1 ,  a = i d T  and a new periodic orbit of double period exists nearby. 
If there are real eigenvalues greater than t 1, [(t)  will deviate exponentially 
with time, and the periodic orbit is unstable (hyperbozic) in the directions of 
the corresponding eigenvectors. 
If there is a complex eigenvalue, A, with norm greater than one, then AX1, A*, 
and (A*)-' are also eigenvalues, and the periodic orbit is called complex 
unstable. 
If there are multiple eigenvalues with independent eigenvectors less than the 
multiplicity of the eigenvalue, the periodic orbit is unstable with ( ( t )  deviating 
not exponentially but with a power oft .  

In figure 3 we plot the eigenvalues of M on the unit complex circle for a system 
of three degrees of freedom. The two pairs of eigenvalues which are different than one 
may be: complex conjugate with norm equal to one (stable orbits), or one pair of 
complex conjugate with unit norm and one pair of real eigenvalues (single unstable 

I 
SINGLE 

UNSTABLE 

I 
STABLE 

DOUBLE COMPLEX 
UNSTABLE UNSTABLE 

Hamiltonian system. The dots denote the eigenvalues of the monodromy matrix. 
Figure 3. A schematic representation of the types of instabilities of periodic orbits in a 3D 
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360 S. C. Farantos 

periodic orbits), or two real pairs for double unstable periodic orbits. There are three 
different cases in the double instability; positive, negative, or one positive and one 
negative pairs of real eigenvalues. Finally, if there is a quadruplet of complex 
eigenvalues the periodic orbit is complex unstable [102]. 

In a recent article [103], we have addressed the question of the classical-quantum 
correspondence in the case of complex instability. Remarkable agreement was found 
in the dynamical behaviour of a 3D model system. 

For polyatomic molecules with more than three degrees of freedom the same kinds 
of instabilities appear, but with more combinations. For example, in a tetratomic 
molecule, such as acetylene [ 1041, we find double complex instability. 

4.3. Continuationlbijiu-cation diagrams 
In investigating the phase space structure of a molecule it is important to follow the 

evolution of a family of periodic orbits with respect to the total energy. Then, the 
question about the change of stability of periodic orbits and the possibility of finding 
new families of periodic orbits arises. Specifically, we can ask when a stable periodic 
orbit will become unstable by varying a parameter of the Hamiltonian. The answer to 
this problem is given by the theory of Krein, Gelfand, and Lindskii [105,101]. 

For a system of two degrees of freedom with only one pair of eigenvalues moving 
on the unit complex circle by varying the total energy of the system, the eigenvalues 
come out on the real axis at 2 1. In this case, bifurcation of new families of periodic 
orbits are observed with the same period as that of the parent periodic orbit, when the 
collision of the eigenvalues happens at 1. When the eigenvalues collide at - 1 the new 
periodic orbits are of double period. In the latter case the parent periodic orbit becomes 
unstable and is often called hyperbolic by refection. For three and higher degrees of 
freedom systems several combinations may happen as is explained in figure 3. 

Can we predict the number and the stability of the bifurcating families of periodic 
orbits? The answer to this question is given by degree theory [106]. The basic concept 
in this theory is the conservation of rotation. 

Plots of the initial coordinates or momenta of the periodic orbits as functions of the 
varying parameter (in our case the total energy or the period) are named continuation 
or bijiucation diagrams, and show the continuation of the family of periodic orbits with 
the parameter as well as the critical values of the energy for bifurcation. Usually, we 
plot projections of these diagrams on several planes, and as we shall see, the 
continuation diagrams reveal the structure of phase space. 

In figure 4 we show several bifurcation schemes which are frequently encountered 
in Hamiltonian conservative systems. The continuous lines represent stable orbits and 
the dashed lines unstable ones. One important type of bifurcation is the saddle-node. 
It appears in the neighhourhood of tangencies of the stable and unstable manifolds of 
an unstable periodic orbit according to Newhouse theorems [ 107,1081. Numerical 
examples of such tangencies have been given [ 109,1101, We can see from figure 4 that 
a saddle-node bifurcation point is the coalescence of the stable and unstable periodic 
orbit. Since saddle-node bifurcations may occur at high excitation energies, the stable 
periodic orbits create stability islands even in highly chaotic regions of phase space. 
This has significant implications for molecular systems. 

In the continuation of a family of periodic orbits we use predictor-corrector 
algorithms with trivial or secant predictors and a Newton-Raphson corrector 
[lll-1131. 
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Transcritical Pitchfork 

Saddle - node 

\ 
\ . . . 

Figure 4. Bifurcation schemes of families of periodic orbits with respect to the varying 
parameter. Continuous lines represent stable orbits, dashed lines unstable orbits. 

5. Applications 
5.1. Triatomic molecules 

Molecular potential energy surfaces are calculated in the Born-Oppenheimer 
approximation and they are described by analytical functions [ 1141. To be useful in 
dynamical calculations, pes must give a global description of the nuclear configuration 
space, and usually they have more than one minima. It is however common, mainly in 
spectroscopic studies, to obtain pes which give a local description of the minimum. 

According to the methodology developed in the previous sections, given a pes we 
first find the minima and the saddle points. For a small polyatomic molecule this is not 
difficult, since a few stationary points are supported by the potential function. However, 
for large clusters the location of stationary points may become the main task. The 
techniques used to locate periodic orbits may also be used for stationary points, since 
they can be considered as the limiting case of zero period. Special methods are needed 
to find reaction paths. Recent work on water clusters demonstrates our methods to find 
stationary points and their association to the dynamic and thermodynamic properties 
of the clusters [115-1181. 

For small polyatomic molecules families of periodic orbits are the most important 
objects for extracting the dynamics of the molecule. From each minimum of the pes 
at least N families of periodic orbits emanate according to Weinstein's theorem [62] 
and we name them principal families. Each principal family corresponds to a vibrational 
normal mode of the molecule. By constructing continuationhifurcation diagrams we 
can locate bifurcating families from the principal ones. 

From a saddle point of the pes with one unstable direction at least N - 1 principal 
families of periodic orbits emanate 1631, which in turn, may also give rise to new 
bifurcating families. 

Another interesting type of periodic orbits are those which are generated from 
saddle-node bifurcations. As we stated before, they emanate from tangencies of the 
stable and unstable manifolds of unstable periodic orbits [ 107,1081, and therefore, they 
may appear at every region of phase space. An important result of our work is the 
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Figure 5. Continuation diagram of (a) HCN, (b)  HNC, and (c )  rotating type of periodic orbits 
above the potential barrier of isomerization [122]. 

systematic location of saddle-node bifurcations of periodic orbits above potential 
barriers. These periodic orbits usually connect separate minima on the pes and we have 
named them earlier as rotating, isomerizing [ 1191, as well as irregular, a term adopted 
by astronomers [ 1201. 

One of our first studies was hydrogen cyanide [121,122]. This molecule has been 
studied extensively by spectroscopists who predict regular vibrational states with 
extended excitations in the stretch modes [46]. A significant number of theoretical 
papers have also been published, both classical [ 1231 and quantum mechanical 
[121,124]. 

The pes of the ground electronic state has two minima, which correspond to the 
stable linear molecule, HCN, and to the metastable isomer, HNC, at the energy of 
0.484 eV above the absolute minimum. The barrier of isomerization is 1.5 1 eV. 

In figure 5 we show bifurcation diagrams for the families of periodic orbits which 
we have located. Those families which emanate from the absolute minimum are denoted 
as M 1 A, M IB, etc. Families emanating from the second minimum are denoted as M2, 
whereas the periodic orbits which appear above the barrier of isomerization are denoted 
with the prefix I. Solid lines correspond to stable periodic orbits, dotted lines to single 
unstable (the monodromy matrix has one pair of real eigenvalues), and the squares to 
double unstable (two pairs of real eigenvalues) periodic orbits. Crosses are for complex 
unstable periodic orbits, i.e. the monodromy matrix gives one quadruplet of complex 
eigenvalues. 
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Exploring molecular vibrational motions 363 

From these diagrams we can draw some important conclusions about the dynamical 
behaviour of the molecule. The motions which describe stretches of CH, and CN 
(these correspond to the periodic orbits M1A and M1B respectively) remain stable at 
energies even above the first dissociation limit. This regularity has been confirmed in 
time dependent quantum mechanical calculations as well [ 1221. Trajectories associated 
with excitation of the bend mode (periodic orbits of M1C type) are also regular up to 
0.75 eV above the potential barrier of isomerization. States related with the 
isomerization process are localized along the 1 type periodic orbits, and they originate 
from saddle-node bifurcations. 

These conclusions are confirmed not only from the quantum mechanical 
calculations [ 122,1241, but also from recent SEP spectroscopic experiments [46l. 
We have also compared the classical survival probability function of HCN with its 
quantum mechanical analogue [ 1231, and the theoretical classical mechanical spectrum 
with the experimental dispersed fluorescence results [ 1251. 

Producing more accurate potential energy surfaces is highly desirable in molecular 
dynamics calculations, and it is quite common for new versions of the potential 
functions to appear constantly. The question how and to what extent the modifications 
of the pes change the dynamics predicted with the old version of the pes is important. 
Since continuation diagrams of periodic orbits carry a significant part of the dynamical 
properties of the molecule, comparison of the continuation diagrams produced from 
different versions of the potential offer an inexpensive way to evaluate the accuracy 
of the potential functions. Such a study was carried out for HCN [ 1261 by comparing 
the bifurcation diagram of the global pes with a local potential function of HCN obtained 
by Carter et al. [ 1271. 

Contrary to HCN ozone has been found to be highly unstable in the excited 
electronic state 'B2. The absorption spectrum D'B2 c X'AI, shows a broad peak, the 
Hartley band [48]. The main interest in this spectrum is a weak structure on the top of 
Hartley's band, which consists of small peaks separated by approximately 250 cm- I .  

Johnson and Kinsey [50] produced the survival probability function from the 
experimental spectrum, and carried out a periodic orbit search. Farantos and Taylor 
[ 1281 also carried out 3D classical calculations, but found no oscillatory structure in 
the survival probability function. 3D quantum mechanical correlation functions have 
also been calculated that show a rich oscillatory structure [ 129,1301. No interpretation 
was given for the dynamics of the molecule. 

In order to elucidate these discrepancies we have performed quantum mechanical 
calculations by solving the time-dependent Schrodinger equation and restricting the 
problem into two dimensions [77,131] by freezing the angle between the two bond 
lengths. Figure 6 shows the 2D quantum survival probability function, which contrary 
to the classical one, has indeed a very rich structure. By examining snapshots of the 
evolving wavepacket it was not difficult to understand the origin of the oscillations in 
the survival probability function. It results from the reflected part of the wavepacket 
from the potential walls on its way towards the exit channels. 

Still, it is difficult to understand the dynamics of the system from these plots. 
Therefore, we tried to locate the periodic orbits which have the same periods as the 
recurrence times extracted from the correlation function (figure 7). The period of these 
periodic orbits or half of it for the symmetric ones, is in accord with the recurrence times 
found in the quantum time autocorrelation function. 

The instability of these periodic orbits is so high that in our first publication [131] 
it was difficult to close them accurately and to construct continuation diagrams. 
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Figure 6. The quantum time autocomelation function of ozone [77]. 

Recently, using the multishooting algorithm it was possible to follow them with the 
energy, and to show that these periodic orbits which emanate above the barrier of 
dissociation originate from saddle-node bifurcations [ 1321. 

It is interesting to mention that periodic orbits of saddle-node type 7c and 7d 
were found for COZ [133,134], as well as for the doubly excited helium atom 
[135,136]. 

In conclusion we can state, that for ozone although classical mechanics fails to 
reproduce the quantum mechanical survival probability function, and this is because 
of the high instability of the system, however periodic orbits can be used to explain the 
quantum localization, and to elucidate the detailed dynamics of the system. 

SO? is an important molecule for atmospheric and combustion chemistry. 
Furthermore, for some time now, it has also attracted the interest of workers wishing 
to investigate molecular chaos. Using an empirical potential function for the ground 
electronic state, Farantos and Murrell [ 1371 found that the onset of chaotic dynamics 
is at about 1.5eV above the minimum. Frederick, McClelland, and Brumer 11381 
showed that even at 1.9 eV a substantial region of phase space is occupied by regular 
trajectories. Experimental results have recently been obtained by Yamanouchi et al. 
[41,43], who have studied the vibrational spectroscopy of the ground electronic state 
of this molecule using dispersed fluorescence (DF), and stimulated emission pumping 
(SEP) techniques [ 1391. 

A periodic orbit analysis has been carried out for the ground [74], and the excited 
state [77] that is used in the SEP experiment. For the electronically excited state it was 
shown that saddle-node bifurcations of periodic orbits create extended stable regions 
in phase space, and regular quantum eigenfunctions are localized on them. 

These wavefunctions are used to assign initial conditions to the trajectories run in 
the ground electronic surface in order to calculate the classical survival probability 
function. 

In figure 8 the bifurcation diagram for the electronic ground state is shown projected 
in the (E,p,.z) plane. From the absolute minimum of the potential the three principal 
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Figure 7. Periodic orbits found in the excited state of ozone [ 1311. 

families emanate and they are labelled as SS, AS, and B, and correspond to the 
symmetric stretch, antisymmetric stretch, and bend modes respectively. Continuous 
lines mark stable periodic orbits, dotted lines correspond to single unstable periodic 
orbits, and open circles to double unstable periodic orbits. Families which bifurcate 
are denoted by numerals, whereas the different branches are labelled with the letters 
A and B. 

We have found a saddle-node bifurcation above the lowest potential barrier of the 
linearization of the molecule and the stable and unstable families are denoted by RlA, 
and RIB respectively. These periodic orbits connect the two symmetrically located 
minima, (OSO), on the potential function. 

Figure 9 shows the fluctuating part of the semiclassical density of states using the 
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366 S. C. Farantos 

Figure 8. Bifurcation diagram for the ground electronic state of SOz. E is the total energy of 
the molecule and pr2 the momentum of one of the SO bond lengths [74]. 

4nn . .-.- 
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Figure 9. The fluctuating part of the density of states calculated with Gutzwiller’s trace formula 
and-the symmetric stretch (SS) and bend (B) principal families of periodic orbits [74]. 
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symmetric stretch and bend principal families of periodic orbits, SS, and B. The vertical 
lines at the top of the figure denote the quantum levels assigned by Yamanouchi et al. 
[43]. They are mainly progressions in the symmetric stretch (VI, O,O), (v, = 1-15), bend 
(0, v2,0), (v2 = 1-5) and ( v l ,  v2,0), (v2 = 1,2). Spectroscopically, more levels have been 
located among those which we show. 

The bifurcation diagram, classical survival probability functions, and the trace 
formula confirm the regularity of the spectrum and the preference for exciting the 
symmetric stretch and bend normal modes in the ground electronic state found by 
Yamanouchi et al. [43]. 

In an effort to explore the dynamics of molecular systems bound by different types 
of forces, a periodic orbit analysis was performed for a van der Waals cluster, ArCO 
[140]. We kept the CO bond length fixed at its equilibrium value, r, and studied the 
dynamics in the coordinates (R, 0); R is the distance of Ar from the centre of mass of 
CO, and 0 the angle between R, and r. The potential function has one minimum, and 
two saddle points for linear geometries. 

The bifurcation diagram is shown in figure 10. R1 and TH1 denote the principal 
families which emerge from the minimum, and imply excitation in the stretch and bend 
modes respectively. Birfurcating families are characterized with the letter A and B; i.e. 
THlA, THlB, R1A etc. Continuous curves correspond to stable periodic orbits, and 
dotted curves to unstable periodic orbits. Periodic orbits which appear above the barriers 
of linearization of the molecule are labelled as I. They are of saddle-node type, and occur 
in pairs, one stable and one unstable. 

In order to examine more globally the phase space we draw Poincark surfaces of 
section. One is shown in figure 11 at an energy above the first barrier but below the 
second one (E = - 0.0087 eV). We can see that the phase space is dominated by chaos, 
but small islands of stability exist which surround the I1A periodic orbit. 

This classical structure has been used to explain the topologies of the 
quantum eigenfunctions. It has been found [141] that among twenty bound states 
extended to all available configuration space, four are localized. The zero point energy 
of Arc0 is just above the barrier of linearization of the molecule, where we have seen 
that the classical chaos dominates. Therefore, the delocalization of the eigenstates is 
not surprising. On the contrary, the localized ones, which are embedded in the 
delocalized states, are unexpected and their existence is explained by the saddle-node 
bifurcations. 

Periodic orbits of isomerizing (or rotating) type, i.e. orbits moving across a potential 
barrier,, have been found for other systems as well. Pollak 11421 studied the association 
of hyperspherical periodic orbits and resonances in atom-diatom reactions. Taylor and 
co-workers used similar types of periodic orbits for the assignment of photodetachment 
spectra in H2F [ 1431, and HCl2 [ 1441. Gomez and Pollak [ 1451 used isomerizing T-shape 
periodic orbits to explain regularities in the low-resolution photodissociation spectra 
of H: , whereas 3D quantum and classical calculations have recently been reported by 
Tennyson and collaborators [ 146,1471. 

Indications for the existence of saddle-node type periodic orbits in Ar3 gave the 
calculation of Lyapunov exponents by Berry and co-workers [148]. They noticed that 
for energies above the barrier of linearization of argon trimer, the Lyapunov exponents 
decrease, something which could be anticipated from the existence of saddle-node 
families of periodic orbits. We have done a periodic orbit analysis on a model potential 
of Ar3 and we indeed found such periodic orbits [149]. 
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Figure 10. Bifurcation diagram of Arc0 van der Waals cluster [140]. 
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Figure 1 1. Poincare surface of section for Arc0 at the energy of - 0.0087 eV. The large 

stability island is due to the stable periodic orbit that originates from the saddle-node 
bifurcation IIA [140]. 
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Figure 12. Bifurcation diagram of CzHz [104]. 

5.2. Tetratomic molecules 
If the periodic orbit analysis and generally the classical mechanical methods are 

going to be useful in vibrational molecular spectroscopy they have to be tested for 
polyatomic molecules. Therefore, the extension of the previous techniques has been 
made to a tetratomic molecule of six degrees of freedom, and acetylene was chosen as 
a prototype system. 

The vibrational spectroscopy of acetylene in the electronic ground state has been 
studied extensively by Field and collaborators [37,38]. One of the reasons for that is 
the association of acetylene with the studies of vibrational chaos. Using dispersed 
fluorescence (DF) and stimulated emission pumping (SEP) spectroscopy, vibrational 
spectra have been recorded at low and high resolution covering an energy range up to 
about 28 000 cm- '. The high-resolution SEP spectra near 27 900 cm- revealed levels 
which satisfy some of the criteria for quantum chaos. 

Contrary to that, low-resolution spectra show peaks which can be labelled with 
approximate quantum numbers related to the normal modes of the molecule. By 
increasing the resolution each peak is resolved to more peaks which may also be labelled 
by approximate quantum numbers. The clumps observed in the low-resolution DF 
spectra have been named by Yamanouchi et al. [37] as feature states. 

We have located the principal families which emanate from the minima of 
acetylene, vinilydene, and the saddle point that separates the two minima. It was not 
difficult to construct continuationhifurcation diagrams and to locate saddle-node 
bifurcations [104]. Dealing with a 6D system several combinations of the stabilities of 
periodic orbits are expected. It is interesting to see that the principal periodic orbits 
remain stable for a substantial range of energies. 

Figure 12 shows a projection of the bifurcation diagram in the (E,p,l) plane, that 
refers to the acetylene minimum. prl  is the momentum conjugate to the distance of 
hydrogen atom 1 from the centre of mass of CC diatom. We chose this projection since 
it exposes better the continuation of the families of periodic orbits avoiding intersections 
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on the projection plane. Each curve corresponds to a family of periodic orbits, and is 
related with one of the n o d  modes of the molecule (at least for energies close to the 
minimum). Thus, we label the principal families of periodic orbits as symmetric stretch 
(SS), antisymmetric stretch (AS), carbon4arbon stretch (CC), trans-bend (TR) and 
cis-bend (CIS). 

Each point on a curve denotes the initial conditions of the periodic orbit at energy 
E, and solid lines mean that the periodic orbits are stable. Dotted lines signal that the 
stability of periodic orbits has changed to single unstable, that is, the motion in one 
degree of freedom has become unstable. The open circles mark double unstable orbits, 
and the crosses complex instability. Once we found one periodic orbit of each family, 
starting from the minimum of the potential, the construction of the bifurcation diagram 
was very easy. 

The shown bifurcation diagram covers an energy range of 4.5eV and with the 
exception of the AS family all other families of periodic orbits are stable for substantial 
range of energies. The symmetric stretch family (SS) is stable for the whole energy 
range. The TR family turns to single unstable at 2.9eV above the minimum, then 
becomes stable again, and eventually turns to double unstable. The CIS family remains 
stable for most of the studied energy interval, and the CC family changes stability at 
3.6eV. The bifurcating family, ASlA, from the AS starts stable and with the same 
period as the parent one, and then turns to complex unstable. 

The stable regions in phase space around the periodic orbits are reflected in the 
regularity of the classical survival probability function. As in the case of SOz, classical 
spectra and Gutzwiller’s trace formula elucidate the regularities and the assignment 
of the low-resolution spectra of the molecule [104]. 

6. Conclusions 
In this article we have reviewed and hopefully demonstrated how periodic orbit 

theory of dynamical systems can be applied to analyse vibrational spectra of highly 
energized molecules. Periodic orbit analysis in the way we apply it offers a systematic 
method to explore the dynamics of the molecule, to obtain vibrational spectra and 
associate them with the dynamical behaviour of the molecule, and most important, to 
make predictions about localization effects as the existence of saddle-node type states 
above potential barriers which we have found in most of the studied cases. 

Of course, the questions of how easy is it to locate periodic orbits and to construct 
a detailed continuationhifurcation diagram always remain. Our results on C2H2 are 
quite promising [ 1041. Especially, the multishooting technique for finding periodic 
orbits is robust and suitable for polyatomic molecules. This method is particularly suited 
for highly unstable systems [ 1321. 

Another problem encountered in polyatomic molecules with a significant number 
of degrees of freedom is the identification of regions of phase space where 
spectroscopically important periodic orbits exist. This problem is related to the task of 
finding good initial conditions for the Newton-Raphson process in locating periodic 
orbits. The construction of the continuationhifurcation diagram started from 
equilibrium points secures the identification of the principal from the bifurcating 
families. Symmetries in phase space always help to locate periodic orbits and must be 
used. However, the location of the saddle-node bifurcation is a more difficult task. 

We have used the classical survival probability function for exploring particular 
regions of phase space. We have seen that in unstable regions peaks in the classical 
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correlation function are due to trajectories which provide good initial conditions for the 
nearby periodic orbits. We find correlation functions and their Fourier transforms less 
expensive than calculating local Lyapunov exponents recently proposed by Pollak 
[89,150]. 

The question about the validity and accuracy of the semiclassical and classical 
theories of vibrational spectra is also quite severe. However, if we take into account 
that for most polyatomic molecules low-resolution spectra are available, then the good 
correspondence between classical and quantum dynamics expected for short times, 
validates the assignment of the spectroscopic features with periodic orbits. Furthermore, 
we expect for low-resolution spectra the principal families of periodic orbits and short 
period bifurcations of them to be enough for explaining regularities. For these reasons 
we believe that the periodic orbit method will remain one of the techniques [34] of 
analysing molecular vibrational spectra. 
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